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Abstract

The Time Dependent Kernel Density Estimation (TDKDE) developed by Har-

vey & Oryshchenko (2012) is a kernel density estimation adjusted by the Exponentially

Weighted Moving Average (EWMA) weighting scheme. The Maximum Likelihood

Estimation (MLE) procedure for estimating the parameters proposed by Harvey &

Oryshchenko (2012) is easy to apply but has two inherent problems. In this study, we

evaluate the performances of the probability density estimation in terms of the unifor-

mity of Probability Integral Transforms (PITs) on various kernel functions combined

with different preset numbers. Furthermore, we develop a new estimation algorithm

which can be conducted using Artificial Neural Networks to eliminate the inherent

problems with the MLE method and to improve the estimation performance as well.

Based on the new estimation algorithm, we develop the TDKDE-based Ran-

dom Forests time series classification algorithm which is significantly superior to the

commonly used statistical feature-based Random Forests method as well as the Ker-

nel Density Estimation (KDE)-based Random Forests approach.

Furthermore, the proposed TDKDE-based Self-organizing Map (SOM) clus-

tering algorithm is demonstrated to be superior to the widely used Discrete-Wavelet-

Transform (DWT)-based SOM method in terms of the Adjusted Rand Index (ARI).

vii
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1 Introduction

The subject study consists of four chapters related to the Time Dependent Kernel

Density Estimation and an overview of the dissertation is given below.

1.1 Comments on Maximum Likelihood Estimation Methods for Time

Dependent Kernel Density Estimation

Kernel Density Estimation (KDE) method is an important nonparametric procedure

to estimate the probability density function which needs only mild assumptions [1].

The exponentially weighted moving average (EWMA) filter is a widely used scheme

for weighting current and past observations by discounting older observations in an

exponential manner. It works by giving more weight to the recent observations and

less weight to the past observations. [2]

If the probability density estimation is thought to vary with time, it would

be reasonable to apply the EWMA weighting scheme to adjust the traditional ker-

nel density estimation. The Time Dependent Kernel Density Estimation (TDKDE)

developed by Harvey and Oryshchenko (2012) [22] is such an estimation adjusted by

the EWMA weighting scheme, and it is an appealing methodology to estimate the

1
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time dependent probability density function (PDF), or the corresponding cumulative

distribution function (CDF).

However, as discussed by Perez (2012) [5], the estimates of the bandwidth and

the discount parameter vary with the preset number of observations in the Maximum

Likelihood Estimation procedure. In our study, we would like to extend the research

of Perez by evaluating the performance of the density estimation on various kernel

functions combined with different preset numbers.

1.2 Parameter Estimation of Time Dependent Kernel Density Using Ar-

tificial Neural Networks

Harvey and Oryshchenko (2012) proposed the Time Dependent Kernel Density Esti-

mation which is an appealing methodology to estimate the time dependent probability

density function. In order to obtain the PDF or CDF of the Time Dependent Kernel

Density, the estimates of the bandwidth and the discount parameter need to be ob-

tained. However, the Maximum Likelihood Estimation procedure proposed by Harvey

and Oryshchenko (2012) has two inherent problems: the estimates of the two param-

eters vary with the preset number of observations and for the bounded support kernel

functions, the likelihood function might need to be adjusted before using this method.

Consequently, we would like to develop a new approach, a supervised learning

method which can be conducted using Artificial Neural Networks, to eliminate the

above mentioned problems. Moreover, this study confirms that our new approach

2
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improves the performance of the estimates in terms of the uniformity of Probability

Integral Transforms (PITs) as well.

1.3 Time-Dependent-Kernel-Density-Based Time Series Classification

Time series classification, which maps time series data into predefined classes [14],

is one of the most appealing domains of data mining due to the abundance of its

application areas.

Selecting an appropriate representation of the time series is critical to the qual-

ity of time series classification algorithms. If a time series is represented with a set

of derived properties, such as mean, variance or quantiles, and the classification algo-

rithm is on the basis of these derived properties, then this approach is defined as the

feature-based classification.

In this study, a new time series classification algorithm with the Time Depen-

dent Kernel Density Estimates (TDKDE) as the feature is developed to improve the

performance of the existing statistical feature-based classification approach proposed

by Nanopoulos et al. (2001)[18]. The performance evaluation is going to be illustrated

using twenty datasets from the UCR Time Series Classification Archive, and the out-

of-bag (OOB) error is used as the criterion to demonstrate the excellent performance

of our proposed method.

3
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1.4 Time-Dependent-Kernel-Density-Based Time Series Clustering

Time series clustering works by mining the underlying structure in an unlabeled time

series dataset to organize data into similar groups [33]. Clustering the time series

is particularly advantageous because labels or targets are not needed in this tech-

nique, which means that it does not rely on time-consuming annotation of the data

[51]. Time series clustering has extracted significant attention in the last few decades,

including the area of anomaly detection, intrusion detection, process control, and

character recognition [52],[19],[53].

In the feature-based approach, the raw time-series is represented by a set of

derived properties [17], namely features. Then, a clustering algorithm is applied to

the extracted feature vectors [32]. Feature vectors usually have lower dimensions com-

pared to the length of the raw data, and features can make distance calculations to

be more meaningful and feasible [37].

In this study, we present a new feature-based time series clustering algorithm

using the Time Dependent Kernel Density Estimation (TDKDE) as the time vary-

ing feature, and compare its performance to that of the widely used feature-based

method: the Discrete Wavelet Transform (DWT) approach. We are going to demon-

strated that our new feature-based Self-organizing Map approach is superior to the

DWT-based approach evaluated on datasets from the UCR Time Series Data Mining

Archive[28].

4
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2 Comments on Maximum Likelihood Estimation for Time Dependent

Kernel Density Estimation

2.1 Introduction

Density estimation provides vital foundations of data modeling, supervised and un-

supervised learning. In time series analysis, density estimates can also be applied

to address a wide variety of questions. For example, in the fields of economics and

finance, the density estimation can provide information about the likelihood of reces-

sion, or the probability of stock returns exceeding a certain value.

Kernel Density Estimation (KDE) method is an important nonparametric pro-

cedure to estimate the probability density function which needs only mild assump-

tions [1]. The exponentially weighted moving average (EWMA) filter is a widely used

scheme for weighting current and past observations by discounting older observations

in an exponential manner. It works by giving more weight to the recent observations

and less weight to the past observations. [2]

If the probability density estimation is thought to vary with time, it would

be reasonable to apply the EWMA weighting scheme to adjust the traditional ker-

nel density estimation. The Time Dependent Kernel Density Estimation (TDKDE)

5
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developed by Harvey and Oryshchenko (2012) [22] is such an estimation adjusted by

the EWMA weighting scheme, and it is an appealing methodology to estimate the

time dependent probability density function (PDF), or the corresponding cumulative

distribution function (CDF).

However, as discussed by Perez (2012) [5], the estimates of the bandwidth and

the discount parameter vary with the preset number of observations in the maximum

likelihood estimation procedure. In our study, we would like to extend the research

of Perez by evaluating the performance of the density estimation on various kernel

functions combined with different preset numbers.

The rest of this study is organized as follows: section 2 illustrates the back-

ground and related methodologies. In section 3, the inherent problems with the

Maximum Likelihood Estimation (MLE) procedure are presented in detail. The per-

formance evaluations based on different kernel functions are included in section 4.

Finally, section 5 concludes the study by summarizing the main contributions.

2.2 Background

The background of the Time Dependent Kernel Density Estimation (TDKDE), the

specification and diagnostic checking tool, i.e. the Probability Integral Transform

(PIT), will be presented in detail in the following subsections.

6
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2.2.1 Kernel Density Estimation

Kernel Density Estimation (KDE) is a non-parametric method to estimate the prob-

ability density function of a random variable Y . Let (y1, y2, ..., yT ) be an independent

and identically distributed sample drawn from a distribution with an unknown prob-

ability density f . The traditional kernel estimator of f(y) at point y can be expressed

as:

f̂T (y) =
1

Th

T∑
i=1

K(
y − yi
h

), (2.2.1)

where T is the number of observations, h is the bandwidth which determines the

smoothness of the density estimate, and K(·) is the kernel, which is a non-negative

function that integrates to one with mean zero. [6]

In general, any function satisfying the following conditions can be used as a

kernel: K(x) ≥ 0 ,
∫
K(x)dx = 1 ,

∫
xK(x)dx = 0, and

∫
x2K(x)dx < ∞. [4] A

number of classical kernel functions are listed in Table 2.1.

2.2.2 Time Dependent Kernel Density Estimation

The basic KDE can be modified to satisfy some particular needs for a specific re-

search. When the density estimation is applied to a time series data, including both

stationary and non-stationary time series, and is thought to vary with time, it would

be reasonable to introduce a weighting scheme to adjust the traditional kernel density

estimation. One of the widely used schemes is the exponentially weighted moving

7
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Table 2.1: The Classical Kernel Functions

Kernel Kernel Function K(u)

Gaussian K(u) = 1√
2π
e−

1
2
u2

Epanechnikov K(u) = 3
4(1− u2) I{|u|≤1}

Uniform K(u) = 1
2 I{|u|≤1}

Triangular K(u) = (1− |u|) I{|u|≤1}

Triweight K(u) = 35
32(1− u2)3 I{|u|≤1}

Tricube K(u) = 70
81(1− |u|3)3 I{|u|≤1}

Biweight K(u) = 15
16(1− u2)2 I{|u|≤1}

Cosine K(u) = π
4 cos

(
π
2u
)
I{|u|≤1}

Silverman K(u) = 1
2e
− |u|√

2 · sin
(
|u|√
2

+ π
4

)

average (EWMA) filter, which works by discounting older observations in an expo-

nentially decaying manner. The time dependent kernel density estimation developed

by Harvey and Oryshchenko (2012) [22] is such an estimation adjusted by the EWMA

weighting scheme which is given by:

f̂t(y) =
1

h

t∑
i=1

K(
y − yi
h

)wt,i, t = 1, ..., T. (2.2.2)

In the general case,
∑t

i=1wt,i = 1. Here, wt,i is chosen to be:

wt,i =
1− ω
1− ωt

ωt−i, i = 1, ..., t, (2.2.3)

8
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which is the exponentially weighted moving average (EWMA) filter with the discount

parameter ω. Consequently, the time dependent kernel density estimator for the

corresponding CDF could be expressed as:

F̂t(y) =
t∑
i=1

H(
y − yi
h

)
1− ω
1− ωt

ωt−i, (2.2.4)

where H(·) is the CDF form of the corresponding kernel K(·).

2.2.3 Probability Integral Transforms

An important tool of evaluating the adequacy of a density forecast is the Probability

Integral Transform (PIT), which is the cumulative probability evaluated at the real-

ized value of the target variable. If a sequence of density forecasts is correctly specified,

then the corresponding PITs should be independently, uniformly distributed with the

range [0,1] [8].

According to Harvey and Oryshchenko (2009) [7], the PIT of yt+1 , denoted

by ut+1, is expressed as:

ut+1 =
t∑
i=1

H(
yt+1 − yi

h
)wt,i (2.2.5)

where H(·) is the CDF form of the corresponding kernel K(·) and wt,i was defined in

the section 2.2.2.

9
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2.3 Inherent Problems with the Maximum Likelihood Estimation Proce-

dure

In order to obtain the time dependent PDF or CDF, feasible estimates of the band-

width h and the discount parameter ω need to be obtained. As proposed by Harvey &

Oryshchenko (2012), h and ω can be estimated by the Maximum Likelihood Method

subject to ω ∈ (0, 1] and h > 0, with the log-likelihood function given in the equation

below:

L(ω, h) =
1

T −m

T−1∑
t=m

lnf̂t+1|t(yt+1) (2.3.6)

=
1

T −m

T−1∑
t=m

ln[
1

h

t∑
i=1

K(
yt+1 − yi

h
)wt,i]. (2.3.7)

Here m is a preset parameter to initialize the estimation procedure. The guideline

to select an appropriate m was not given in the research of Harvey and Oryshchenko

(2012). The general suggestion, as mentioned by Harvey and Oryshchenko (2012),

was setting m = 50 or 100 if the sample size was big.

However, as illustrated by (Perez, 2012), the estimates of the bandwidth h

and the discount parameter ω may vary with different selections of m. The results

based on simulated data showed that the estimates for the discount parameter ω

were almost stable, but estimates for the bandwidth h varied with different values of

m. The detailed implementation and further discussion will be presented in the next

section.

Another problem within the maximum likelihood function is that f̂t+1|t(yt+1) >

10
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0 should be satisfied for all t = m,m+1, ..., T−1 to make lnf̂t+1|t(yt+1) meaningful. For

unbounded support kernel functions such as Gaussian Kernel and Silverman Kernel,

this condition can be guaranteed theoretically [22]. However, for the bounded kernel

functions including Epanechnikov Kernel and Uniform Kernel, this condition cannot

always be satisfied. The possible solution provided by Harvey and Oryshchenko (2012)

was setting f̂t+1|t(·) equal to a very small positive number, but it may severely affect

the estimates when large numbers of data points are adjusted in this way.

2.4 Performance Evaluation with Different Combinations of Kernel Func-

tions and m

As illustrated by Perez (2012), the maximum likelihood estimates of ω and h vary

with the preset parameter m. However, the performance in terms of the adequacy of a

density forecast was not discussed in her study. In our study, we choose the Probability

Integral Transform (PIT) as a criterion to evaluate the performance based on the data

described below.

2.4.1 Dataset

To illustrate the problems with the Maximum Likelihood Estimation (MLE) method,

and to make the results comparable to those in the research of Harvey and Oryshchenko

(2012), we generate a series of T = 1000 observations (shown in Figure 2.1) from the

same distribution as the filtered stock data in the research of Harvey and Oryshchenko

11
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(2012) , which is an MA(1)−GARCH(1, 1) model with 7 degrees of freedom of the

t−distribution for errors. To be specific, the MA(1) − GARCH(1, 1) model [9] is

expressed as:

yt = µ+ θεt−1 + εt

εt = ztσt√
ν

ν − 2
zt ∼ tν

σt =
√
α0 + α1ε2t−1 + β1σ2

t−1.

Here, the parameters are chosen as θ = 0.2102, α1 = 0.0979, β1 = 0.9010, ν = 7, in

order to be consistent with the model of the filtered stock data.

2.4.2 Performance Comparisons with Different Combinations of Kernel

Functions and m

As introduced in section 2.2.3, if a sequence of density forecasts is correctly specified,

then the corresponding PITs should be uniformly distributed with a range [0,1]. A

commonly used method to compare a sample with a reference probability distribution

is the Kolmogorov-Smirnov test (KS test). In this study, we employed the p-value of

KS test to evaluate uniformity of the PITs. For the bounded support kernel functions,

f̂t+1|t(·) might need to be adjusted to make this condition f̂t+1|t(yt+1) > 0 satisfied, so

that the estimation performance might not be comparable to that of the unbounded

12
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Figure 2.1: 1000 Observations Generated from MA(1)−GARCH(1, 1) Model with Student-
7 Errors and Parameters: θ = 0.2102, α1 = 0.0979, β1 = 0.9010, ν = 7.

support kernel functions. In this study, the performance of the two unbounded support

kernel function, i.e. Gaussian Kernel and Silverman Kernel are compared, and the

results are presented in Table 2.2 and Figure 2.2.

As indicated from Figure 2.2, for both Gaussian Kernel and Silverman Kernel,

as m increases from 1 to 100, ĥ shows a slightly increasing trend and ω̂ has a trend

of decreasing. When Gaussian Kernel is employed, the p-value is decreasing while m

is increasing, which indicates that the PITs have a trend to deviate from the uniform

distribution. There is no obvious trend for the p-value when Silverman Kernel is used,

and since the p-value varies within the range of (0.3, 0.6), which means that there is

13
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no significant evidence to say that the PITs deviate from the uniform distribution.

In terms of the criterion of uniformity of PITs, the Silverman Kernel has a better

performance with regard to this dataset.

Table 2.2: Performance Comparisons in Terms of the Uniformity of the PITs Measured by
the P-value of KS Test

Gaussian Kernel Silverman Kernel

m ĥ ω̂ KS Test P-value ĥ ω̂ KS Test P-value

1 0.4232 0.9580 0.0865 0.3149 0.9508 0.5646

10 0.4195 0.9585 0.0865 0.3100 0.9508 0.5807

20 0.4219 0.9581 0.0865 0.3633 0.9055 0.3994

30 0.4233 0.9576 0.0865 0.3636 0.9052 0.3994

40 0.4246 0.9572 0.0865 0.3634 0.9052 0.3994

50 0.4266 0.9569 0.0868 0.3636 0.9051 0.3994

60 0.4299 0.9567 0.0814 0.3640 0.9052 0.3860

70 0.4318 0.9563 0.0762 0.3642 0.9047 0.3994

80 0.4349 0.9561 0.0713 0.3646 0.9046 0.3994

90 0.4365 0.9560 0.0713 0.3644 0.9047 0.3994

100 0.4778 0.9307 0.0330 0.3647 0.9045 0.4797

2.5 Contributions

In this study, we discussed two inherent problems with the existing Maximum Like-

lihood Estimation procedure of estimating the parameters in the Time Dependent

14
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Figure 2.2: Variations of ĥ, ω̂, and P-value for KS Test with Different m

Kernel Density Estimation, i.e., the estimates vary with the preset parameter m, and

the likelihood functions may need to be adjusted with the bounded-support-kernel

functions. We extended the research of Perez (2012) by evaluating the performance

of the probability density estimation for various kernel functions combined with dif-

ferent preset numbers. In terms of the criterion of uniformity of Probability Integral

Transforms (PITs), we have found that the Silverman Kernel has a better performance

than the commonly used Gaussian Kernel with regard to the simulated filtered stock

dataset.

15



www.manaraa.com

3 Parameter Estimation of Time Dependent Kernel Density Using

Artificial Neural Networks

3.1 Introduction

The time dependent kernel density developed by Harvey and Oryshchenko (2012)

is a kernel density estimation adjusted by the exponentially weighted moving aver-

age (EWMA) weighting scheme. It is an appealing methodology that can be easily

applied to estimate the time dependent probability density function (PDF), or the

corresponding cumulative distribution function (CDF).

As proposed by Harvey and Oryshchenko (2012), the bandwidth and the dis-

count parameter can be estimated using the Maximum Likelihood Estimation proce-

dure. However, as illustrated by Perez (2012), the estimates of the two parameters

vary with the preset number of observations.[5].

Consequently, we would like to develop a new approach, a supervised learning

method which can be conducted using Artificial Neural Networks, to eliminate this

problem caused by the preset number. Moreover, this study confirms that our new

approach improves the performance of the estimates as well.

The rest of this study is organized as follows: section 2 illustrates the back-
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ground and related methodologies. In section 3, our proposed approach that could

eliminate the problem caused by the preset number will be illustrated. Section 4 will

carry out the diagnostic checking to compare the performance of our new approach

with that of the MLE method. Finally, section 5 concludes the study by summarizing

the main contributions.

3.2 Background and Related Methodologies

The background of the inherent problems with the Maximum Likelihood Estimation

method and the Artificial Neural Networks that we are going to use in our new

algorithm are discussed in the following subsections.

3.2.1 Inherent Problems with the Maximum Likelihood Estimation Pro-

cedure

As proposed by Harvey and Oryshchenko (2012), h and ω can be estimated by the

Maximum Likelihood Method subject to ω ∈ (0, 1] and h > 0, with the log-likelihood

function given by:

L(ω, h) =
1

T −m

T−1∑
t=m

lnf̂t+1|t(yt+1) (3.2.1)

=
1

T −m

T−1∑
t=m

ln[
1

h

t∑
i=1

K(
yt+1 − yi

h
)wt,i]. (3.2.2)

17



www.manaraa.com

Here m is a preset parameter to initialize the estimation procedure. The guideline

to select an appropriate m was not given in the research of Harvey and Oryshchenko

(2012). The general suggestion, as mentioned by Harvey and Oryshchenko (2012),

was setting m = 50 or 100 if the sample size was big.

However, as illustrated by Perez (2012), the estimates of the bandwidth h

and the discount parameter ω may vary with different selections of m. The results

based on simulated data showed that the estimates for the discount parameter ω

were almost stable, but estimates for the bandwidth h varied with different values of

m. The detailed implementation and further discussion will be presented in the next

section.

Another problem within the maximum likelihood function is that f̂t+1|t(yt+1) >

0 should be satisfied for all t = m,m+1, ..., T−1 to make lnf̂t+1|t(yt+1) meaningful. For

unbounded support kernel functions such as Gaussian Kernel and Silverman Kernel,

this condition can be guaranteed theoretically [22]. However, for the bounded Kernel

functions including Epanechnikov Kernel and Uniform Kernel, this condition cannot

always be satisfied. The possible solution provided by Harvey and Oryshchenko (2012)

was setting f̂t+1|t(·) equal to a very small positive number, but it may severely affect

the estimates when large numbers of data points are adjusted in this way.

3.2.2 Artificial Neural Networks

In machine learning, Artificial Neural Networks (ANNs) are nonlinear models moti-

vated by the physiological architecture of the nervous system which can be trained
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to learn to approximate functions of complex non-linear systems that usually depend

on a large number of inputs [10]. ANNs are typically organized in layers: the input

layer, hidden layer and output layer, which consist of several neurons. Each neuron

in a layer is connected to adjacent layers by the weights. Data are presented to the

network via the input layer, which are multiplied by weights, and then go through

the activation function of the neuron in one or more hidden layers [12]. The function

in the output layer computes the output of the artificial neuron [13]. The structure

of the typical ANNs and an artificial neuron are shown in Figure 3.1 and Figure 3.2

below.

Figure 3.1: A Typical Structure of an ANN

Back-propagation (BP) algorithm is the most frequently used, effective, and

easy to learn model for multilayered networks. It is a supervised learning technique

which is based on the gradient descent method that attempts to minimize the error of

the network by moving down the gradient of the error curve. Levenberg-Marquardt
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Figure 3.2: The Typical Artificial Neuron in ANNs

algorithm is one of the fastest back-propagation algorithm which works well for train-

ing small and medium sized networks and patterns [11]. This algorithm is applied in

our study, because while providing a numerical solution to the problem of minimizing

a nonlinear function, it has a speed advantage in the computation as well.

3.3 A Proposed Method for Kernel Density Estimation Using Neural

Networks

In order to eliminate the volatility of the estimates, and to improve performance of

the density estimation evaluated by Probability Integral Transforms, we develop a

new approach–a supervised learning method which can be conducted using Artificial

Neural Networks.
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3.3.1 The New Estimation Method Using Artificial Neural Networks

The idea of this new estimation procedure came from the fact that the CDF of a

random variable Y should follow the uniform distribution U(0, 1). Thus, when the

estimated CDF (F̂t(y)) is as close as possible to the empirical CDF of the standard

uniform distribution, the corresponding estimates of the parameters (ω, h) should be

the optimal estimates.

Consequently, the estimation procedure could be turned into a supervised

learning task which can be conducted using Artificial Neural Networks to reduce

the computation time significantly.

We will train the network to map the estimated CDF to the CDF of the stan-

dard uniform distribution. Ideally, we would like to see F̂kt(y) = Ut, (t = 1, ..., T ),

where F̂kt(y) is the time dependent kernel estimator for the CDF evaluated at yt

corresponding to the pair (ωk, hk), and Ut is the tth observation of the CDF for the

discrete standard uniform distribution. One measurement of the deviation of F̂kt(y)

from Ut is the squared difference between F̂kt(y) and Ut, i.e. Ek =
∑T

t=1[F̂kt(y)−Ut]2.

Consequently, the optimal pair of parameters, (ω∗, h∗), is the pair corresponding to

the minimal Ek with constraints 0 < ω < 1 and h > 0. The key steps of our algorithm

are developed as follows, and a schematic diagram of the flow of our algorithm for

estimating h and ω is given by Figure 3.3.
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Algorithm 1 Parameter Estimation Algorithm

1: procedure Parameter Estimation Algorithm

2: Obtain the initial bandwidth h0 and ω0 .

3: Generate K pairs of h and ω : (ωk, hk), k = 1, 2, ...,K, where h ∈ [0.5h0, 1.5h0], and

ω ∈ [0.5ω0, 1.5ω0].

4: Generate T points: Ut = t/T, t = 1, 2, ..., T, to represent the CDF of the discrete

standard uniform distribution.

5: Calculate F̂kt(y) according to each pair of (ωk, hk) where

F̂kt(y) =

t∑
i=1

H(
yt − yi
hk

)
1− ωk
1− ωtk

ωt−ik

and k = 1, 2, ...,K. Sort F̂kt(y) such that: F̂k1(y) ≤ F̂k2(y) ≤ ... ≤ F̂kT (y).

6: Calculate the squared difference between F̂kt(y) and Ut:

Ek =

T∑
t=1

[F̂kt(y)− Ut]2

where k = 1, 2, ...,K, t = 1, ..., T.

7: Train the Neural Network with (ωk, hk) as the input, and Ek as the output to sub-

stitute step 4 to step 6.

8: Select the pair of (ωk, hk) corresponding to the minimal Ek with constraints 0 < ω <

1 and h > 0 to be the optimal pair of parameters: (ω∗, h∗).

9: end procedure
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Initial h0 and ω0

Generate K pairs of (ωk, hk)

(Input Layer for ANN)

Generate T points:

Ut = t/T ,

U1 < U2 < ... < Ut

Calculate F̂kt(y) according to each

pair of (ωk, hk) , then sort F̂kt(y) :

(ω1, h1) → F̂11(y) ≤ F̂12(y) ≤ ... ≤ F̂1T (y)

(ω2, h2) → F̂21(y) ≤ F̂22(y) ≤ ... ≤ F̂2T (y)

... ... ...

(ωK , hK) → F̂K1(y) ≤ F̂K2(y) ≤ ... ≤ F̂KT (y)

Hidden

Layers

for ANN

Ek =
∑T

t=1[F̂kt(y) − Ut]
2

(Output Layer for ANN)

min{Ek}

Select the pair of (ωk, hk) corresponding

to the minimal Ek subject to 0 < ω < 1,

h > 0 to be the optimal parameters (ω∗, h∗)

f̂t(y) = 1
h∗
∑t

i=1K(y−yih∗ ) 1−ω∗
1−ω∗tω

∗t−i

F̂t(y) =
∑t

i=1H(y−yih∗ ) 1−ω∗
1−ω∗tω

∗t−i

W(Weights)

Figure 3.3: Key Steps of the New Algorithm of Parameters Estimation.

23



www.manaraa.com

3.3.2 Dataset

In order to make the results comparable to those in the research of Harvey and

Oryshchenko (2012), we generate a series of T = 1000 observations from the same

distribution as the filtered stock data in the research of Harvey and Oryshchenko

(2012), which is an MA(1) − GARCH(1, 1) model with 7 degrees of freedom of the

t−distribution for errors. To be specific, the MA(1) − GARCH(1, 1) model [9] is

expressed as:

yt = µ+ θεt−1 + εt

εt = ztσt√
ν

ν − 2
zt ∼ tν

σt =
√
α0 + α1ε2t−1 + β1σ2

t−1.

Here, the parameters are chosen as θ = 0.2102, α1 = 0.0979, β1 = 0.9010, ν = 7, in

order to be consistent with the model of the filtered stock data.

3.3.3 The Selection of Initial Values h0 and ω0

The initial values, i.e. h0 and ω0, could have essential influence on the estimates, so

the proper selection of h0 and ω0 is necessary in our estimation process. In order

to obtain a guidance for the proper choice of initial values, we may visualize the

relationship between (ωk, hk) and the corresponding Ek as our first step. In order to
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obtain relevant stable estimates, K is chosen to be 500 in this case. For the purpose

of comparison with the MLE method, F̂kt(y) is calculated using Gaussian Kernel and

Silverman Kernel respectively. The visualization is based on the Gaussian Kernel for

the purpose of illustration. The 3-D plot (Figure 3.4) gives us a clear trend for the

Figure 3.4: 3-D Plot of (ω, h,E) to Visualize the Relationship between Parameters ω, h and
the Squared Error E.

relationship between parameters ω, h and the squared error E. In general, E decreases

as ω increases and h decreases. The trend is more obvious in a 2-D view which is

shown in Figure 3.5 and Figure 3.6. With constrains 0 < ω < 1 and h > 0 , the

global minimal Ek could be achieved in the region defined by our initial values (i.e.

h ∈ [0.5h0, 1.5h0] and ω ∈ [0.5ω0, 1.5ω0]), which indicates that our choice of the pair

of initial values (ω0, h0) = (0.9, 0.3) is appropriate. In the case of our simulated data,

the optimal pair of estimates for ω and h are 0.9871 and 0.0604 respectively, with a
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Figure 3.5: In General, E Decreases with Increasing ω, and E Reaches its Minimum in
ω ∈ [0.5ω0, 1.5ω0](ω0 = 0.9).

squared error E = 0.0269, which is marked by the black dot in Figure 3.4, Figure 3.5

and Figure 3.6.

3.3.4 Analysis of the Network Response

The inputs of the neural network are the K pairs of (ωk, hk) simulated following

the guidance in the previous section, and the outputs are K squared errors Ek

(k = 1, 2, ..., K,K = 500 in this case). The Levenberg - Marquardt algorithm, which

works well for training small and medium sized networks and patterns (Yu and Wilam-

owski, 2011), is applied for the Artificial Neural Networks (designed with two hidden

layers) in this study. This algorithm provides a numerical solution to the problem of

minimizing a nonlinear function, and it has a speed advantage in the computation as
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Figure 3.6: In General, E Decreases with Decreasing h , and E Reaches its Minimum in
h ∈ [0.5h0, 1.5h0](h0 = 0.3).

well.

The network performance can be evaluated by errors, which are the differences

between the network outputs and the corresponding targets. One way to perform

this analysis is to conduct a regression analysis between the network outputs and the

targets on the training, validation, and test sets, respectively.

Figure 3.7 illustrates the network performance by regression plots. The net-

work outputs are plotted versus the targets in each plot. The 45-degree dashed line

represents the perfect fit, which indicates that outputs are equal to targets. The best

linear fit is shown by the solid line. In this case, the best linear fit line almost overlaps

with the perfect fit line in each plot, which indicates a very good fit. The R-value,

which is a correlation coefficient between the outputs and targets, is close to 1 for the
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Figure 3.7: Regression Plots of the Network Outputs with Respect to Targets for the Train-
ing Set, Validation Set, and Testing Set.

training, validation, and test sets respectively, which yields the conclusion of a perfect

fit as well.

3.4 Diagnostic Checking

An important tool of evaluating the adequacy of a density forecast is the probability

integral transform (PIT), which is the cumulative probability evaluated at the realized
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value of the target variable. If the density forecast is correctly specified, then the

corresponding PITs should be uniformly distributed.

According to Harvey and Oryshchenko, the PIT of yt+1 , denoted by ut+1, is

expressed as:

ut+1 =
t∑
i=1

H(
yt+1 − yi

h
)wt,i, (3.4.3)

where H(·) is the CDF form of the corresponding kernel K(·).

To compare the estimates of our new approach with the MLE method, we need

to select some values for the preset parameter m to initialize the estimation procedure.

Here, the values of m are chosen from 1 to 100, and the kernel K(·) is calculated using

the Gaussian Kernel in all cases for the purpose of comparison. As can be seen from

Table 3.1, the estimates of h and ω vary with the value of m for the MLE method.

The Kolmogorov-Smirnov test (KS test) could be employed to test if the PITs

follow the standard uniform distribution or not. The p-values for KS test reported in

Table 3.1 indicate that, the distribution of PITs generated from our new technique

is much closer to the standard uniform distribution compared to that of the MLE

method.

The same conclusion can be obtained from the graph as well. For the purpose of

illustration, we only visualize the PITs in the cases of our new method and m = 50,

m = 100 in the MLE method. If PITs are uniformly distributed, their empirical

CDF should be close to a 45-degree line. In Figure 3.8, 3.9 and 3.10, the green

line represents the empirical CDF of PITs, and the black line stands for the CDF

of the standard uniform distribution, which is a 45-degree line. We can see the
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Table 3.1: Performance Comparisons: The MLE Approach v.s. the Proposed ANN Method
(with Gaussian Kernel)

Maximum Likelihood Method ĥ ω̂ KS Test P-value

m = 1 0.4232 0.9580 0.0865

m = 10 0.4195 0.9585 0.0865

m = 20 0.4219 0.9581 0.0865

m = 30 0.4233 0.9576 0.0865

m = 40 0.4246 0.9572 0.0865

m = 50 0.4266 0.9569 0.0868

m = 60 0.4299 0.9567 0.0814

m = 70 0.4318 0.9563 0.0762

m = 80 0.4349 0.9561 0.0713

m = 90 0.4365 0.9560 0.0713

m = 100 0.4778 0.9307 0.0330

The Proposed Method 0.0604 0.9871 0.9995

obvious deviation between the empirical CDF of PITs and the CDF of the standard

uniform distribution in Figure 3.8 and Figure 3.9, where the estimates are derived by

MLE method. In contrast, the empirical CDF of PITs and the CDF of the standard

uniform distribution are hardly distinguishable in Figure 3.10, in which the estimates

are obtained from our Artificial Neural Networks approach.

The similar conclusions can be obtained using Silverman Kernel. Table 3.2

indicate that, the distribution of PITs generated from our new technique is also much

closer to the standard uniform distribution compared to that of the MLE method
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Figure 3.8: A Comparison of the Empirical CDF of PITs and CDF of U(0, 1) by MLE(m =
50) : (h∗, ω∗) = (0.4266, 0.9569). (KS test p-value = 0.0868)

using Silverman Kernel.

3.5 Financial Applications: NASDAQ Stock Returns

NASDAQ stock returns dataset can be obtained from Yahoo-Finance. The sample

starts on June 15th 2004, and ends on May 13th 2016, which contains 3001 observa-

tions. We follow the same rule to calculate stock returns as mentioned in the research

of Harvey and Oryshchenko (2012). If we denote the daily adjusted close price as

yt, then the returns can be computed as ∆ln(yt), where adjusted close price is the

close price adjusted for dividends and splits. We finally obtain 3000 data points of

NASDAQ stock returns, and the yt together with ∆ln(yt) are presented in the Figure

3.11.

31



www.manaraa.com

Figure 3.9: A Comparison of the Empirical CDF of PITs and CDF of U(0, 1) by MLE(m =
100) : (h∗, ω∗) = (0.4778, 0.9307). (KS test p-value =0.0330)

When Gaussian Kernel is applied, the estimates obtained by the new algorithm

are (h∗, ω∗) = (0.0028, 0.9628), and the corresponding performance can be evaluated

by the uniformity of PITs. In Figure 3.12, the empirical CDF is pretty close to a

45-degree line. Furthermore, the p-value for KS test is 0.5816, which indicate that

the PITs are uniformly distributed.

3.6 Contributions

In this study, we have developed a new method to estimate the parameters in the Time

Dependent Kernel Density Estimation (TDKDE). The new estimation procedure is

able to solve the two problems with the existing Maximum Likelihood Estimation

method, which means that it eliminates the problem caused by the preset parameter
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Figure 3.10: A Comparison of the Empirical CDF of PITs and CDF of U(0, 1) by the
Proposed ANN Method: (h∗, ω∗) = (0.0604, 0.9871). (KS Test P-value = 0.9995)

m, and makes it possible to combine with the bounded-support-kernel functions with-

out adjusting the likelihood functions. More importantly, our new method improves

the performance of the estimates evaluated by the uniformity of Probability Integral

Transforms (PITs), and it can be applied to the both stationary and non-stationary

time series including the real data-NASDAQ stock returns-with excellent results.
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Table 3.2: Performance Comparisons: The MLE Approach v.s. the Proposed ANN Method
(with Silverman Kernel)

Maximum Likelihood Method ĥ ω̂ KS Test P-value

m = 1 0.3149 0.9508 0.5646

m = 10 0.3100 0.9508 0.5807

m = 20 0.3633 0.9055 0.3994

m = 30 0.3636 0.9052 0.3994

m = 40 0.3634 0.9052 0.3994

m = 50 0.3636 0.9051 0.3994

m = 60 0.3640 0.9052 0.3860

m = 70 0.3642 0.9047 0.3994

m = 80 0.3646 0.9046 .3994

m = 90 0.3644 0.9047 0.3994

m = 100 0.3647 0.9045 0.4797

The Proposed Method 0.0762 0.9567 0.9824
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Figure 3.11: The NASDAQ Stock Returns

Figure 3.12: A Comparison of the Empirical CDF of PITs and CDF of U(0, 1) by the
Proposed ANN Method: (h∗, ω∗) = (0.0028, 0.9628). (KS test P-value = 0.5816)
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4 Time-Dependent-Kernel-Density-Based Time Series Classification

4.1 Introduction

Time series data, which represents a sequence of values collected at different time

points, is common in a wide range of fields. The classification of time series is par-

ticularly beneficial for the areas including healthcare, finance, economics, signal pro-

cessing and video retrieval.

4.1.1 Time Series Classification

Time series classification, which maps time series data into predefined classes [14],

is one of the most appealing domains of data mining due to the abundance of its

application areas. For example, in the domain of healthcare, the electrocardiogram

(ECG) signals, which represent the cardiac function[15], can be classified as normal

and abnormal signals. In this way, the hidden information conveyed by the ECG signal

plays a significant role in the investigation of cardiac disorders. As another example,

images can be converted to “pseudo time series” data to ease classification tasks. In

the leaf classification problem, the image of a leaf can be converted into a time series
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by measuring the local angle at each point of the image contour[16]. Figure 4.1, a

video screen shot created by Eamonn Keogh and Chotirat Ann Ratanamahatana,

shows the conversion from a shape to a “time series”.

Figure 4.1: A Shape of a Leaf can be Converted into a One Dimensional “Pseudo Time
Series”.

4.1.2 Representation of Time Series

Selecting an appropriate representation of the time series is critical to the quality of

time series classification algorithms. As illustrated by Fulcher (2014)[17], the existing

time series classification methods can be categorized as the instance-based classifica-

tion and the feature-based classification. For the time series in the time-domain form,

the distance between any two time series is a function of the difference between the

time-ordered observations in these two sequences. In this case, a new time series can

be classified by matching it to the similar instance of time series with a known class.

This method of classification is defined as the instance-based classification. Alterna-
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tively, if a time series is represented with a set of derived properties, such as mean,

variance or quantiles, and the classification algorithm is on the basis of these derived

properties, then this approach is defined as the feature-based classification.

Compared to the instance-based classification method, the feature-based clas-

sification approach has the advantages of reducing the dimensionality, keeping the

most important information while removing noises.

To choose appropriate features is one of the hardest problems of the feature-

based classification approach. Some feature-based representations of time series have

been explored in previous studies. For example, Nanopoulos et al. (2001) [18] de-

veloped a method using the mean, standard deviation, skewness, and kurtosis of the

first and second order of the data to classify the time series. Wang et al.(2006) [19]

proposed a set of features with a variety of measures which included periodicity, se-

rial correlation, measures of trend, seasonality, self-similarity, chaos, nonlinearity, etc.

Deng et al.(2013)[20] used measures of mean, spread, along with the trend in local

time-series intervals as features to classify time series.

Since in the feature-based classification methods mentioned above, most fea-

tures are directly related to properties of the distribution, we would like to use the

adjusted probability density itself, Time Dependent Kernel Density Estimation, as a

feature, and compare the classification performance based on this new feature with

some of the existing algorithms.
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4.1.3 Structure of the Study

In this study, a new time series classification algorithm with the Time Dependent

Kernel Density Estimates (TDKDE) as the feature is developed to improve the perfor-

mance of the existing statistical feature-based classification proposed by Nanopoulos

et al. (2001)[18].

The rest of this study is organized as follows: section 2 illustrates the back-

ground and related methodologies. In section 3, the proposed algorithm on the basis

of TDKDE is presented in detail. The dataset description and the performance com-

parison are included in section 4 and section 5. Finally, section 6 concludes the study

by summarizing the main contributions.

4.2 Background and Related Methodologies

In this study, we introduce the Time Dependent Kernel Density Estimates as a new

feature with the Random Forest classification algorithm built on it. The background

and related methodologies are explained in detail in the following subsections.

4.2.1 Time Dependent Kernel Density Estimates (TDKDE)

Kernel Density Estimation (KDE) is a non-parametric method to estimate the prob-

ability density function of a random variable Y . Let (y1, y2, ..., yT ) be an independent

and identically distributed sample drawn from a distribution with an unknown prob-

ability density f [38]. The traditional kernel estimator of f(y) at point y can be
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expressed as:

f̃T (y) =
1

Th

T∑
j=1

K(
y − yj
h

). (4.2.1)

Here T is the number of observations, h is the bandwidth, and K(·) is the kernel,

which is a non-negative function that integrates to one with mean zero.

The Time Dependent Kernel Density Estimates (TDKDE) can be seen as a

combination of the Kernel Density Estimation(KDE) and the time factor. When the

density estimation is thought to vary with time, it could be reasonable to introduce

a weighting scheme to adjust the traditional kernel density estimation. One of the

widely used schemes is the exponentially weighted moving average (EWMA) filter,

which works by discounting older observations in an exponentially decaying manner.

The time dependent kernel density estimation developed by Harvey and Oryshchenko

(2012) [22]is such an estimation adjusted by the EWMA weighting scheme which is

given by:

f̃t(y) =
1

h

t∑
j=1

K(
y − yj
h

)wt,j, t = 1, ..., T. (4.2.2)

In the general case,
∑t

j=1wt,j = 1. In the study of Harvey and Oryshchenko (2012),

wt,j is chosen to be:

wt,j =
1− ω
1− ωt

ωt−j, j = 1, ..., t, (4.2.3)

which is the EWMA filter with the discount parameter ω. Consequently, the TDKDE

for the corresponding CDF can be expressed as:

F̃t(y) =
t∑

j=1

H(
y − yj
h

)
1− ω
1− ωt

ωt−j, (4.2.4)
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where H(·) is the CDF form of the corresponding kernel K(·).

In order to obtain the TDKDE, two parameters, the bandwidth h and the

discount parameter ω, need to be estimated. The new estimation procedure has been

developed and discussed in Chapter 3.

4.2.2 Feature Extraction

The selection of an appropriate representation of the time series is one of the most

critical steps for time series classification. Two common ways are the instance-based

representation and the feature-based representation.

The feature-based representation is commonly applied to reduce the dimension-

ality, as well as discard noises. The feature-based time series classification technique

works by transforming the data in the time domain into feature set before handing

it to the classification algorithms [23]. Two existing feature extraction methods and

the new method will be illustrated as follows.

Nanopoulos et al.(2001)[18] used two types of statistical features in his study:

the first order and the second order features. The first order features are directly gen-

erated from the raw data yt (t = 1, 2, ..., T ), whereas the second order features are ex-

tracted from the differences of nearby values ∆yt (t = 1, 2, ..., T ). Here ∆yt = yt+D−yt

(1 ≤ t ≤ T −D), where D is the time distance between the two points. Four statis-

tics are computed for each order: the mean µ, standard deviation σ, skewness S and

kurtosis K. For the ith sample in the dataset with length T : (yi1, yi2, ..., yiT ), the
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corresponding statistical feature vector f 1i can be expressed by

f 1i = (µ
(1)
i , σ

(1)
i , S

(1)
i , K

(1)
i , µ

(2)
i , σ

(2)
i , S

(2)
i , K

(2)
i ),

where µ
(1)
i , σ

(1)
i , S

(1)
i and K

(1)
i are the first order statistics, and µ

(2)
i , σ

(2)
i , S

(2)
i and K

(2)
i

are the second order statistics.

The Kernel Density Estimates(KDE) were also used as features for time se-

ries clustering based on forecast densities (Alonso et al.(2006)[24]). We would like

to modify the mentioned method and combine KDE with a classification algorithm

for the purpose of comparison. For the ith sample in the dataset with length T :

(yi1, yi2, ..., yiT ), the corresponding statistical feature vector f 2i can be expressed by

KDE at point y
(q)
i , (q = 1, 2, ..., Q), i.e.

f2i = (f̂T (y
(1)
i ), f̂T (y

(2)
i ), ..., f̂T (y

(Q)
i )),

where f̂T (y
(q)
i ) is the KDE at point y

(q)
i .

To enhance the probability density-based feature extraction method, we can

further replace the traditional KDE with Time Dependent Kernel Density Estimates

(TDKDE), which was developed by Harvey and Oryshchenko (2012)[22], as illustrated

in section 3.2.1. For the ith sample in the dataset with length T : (yi1, yi2, ..., yiT ), the

corresponding statistical feature vector f 3i can be expressed by TDKDE at point y
(q)
i ,

(q = 1, 2, ..., Q), i.e.
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f3i = (f̃T (y
(1)
i ), f̃T (y

(2)
i ), ..., f̃T (y

(Q)
i )),

where f̃T (y
(q)
i ) is the TDKDE at point y

(q)
i . We will focus on the new algorithm based

on the TDKDE feature. Table 4.1 gives a brief summary of the three methods of

feature extractions.

Table 4.1: Comparison of the Three Feature Extraction Methods

Feature extraction Feature Vector

A) Statistical-based feature f1 = (µ(1), σ(1), S(1),K(1), µ(2), σ(2), S(2),K(2))

B) KDE-based feature f2 = (f̂T (y(1)), f̂T (y(2)), ..., f̂T (y(Q)))

C) TDKDE-based feature f3 = (f̃T (y(1)), f̃T (y(2)), ..., f̃T (y(Q)))

4.2.3 Classification: Random Forests Algorithm

The common classification algorithms include Decision Trees, Random Forests, Sup-

port Vector Machines (SVMs), Neural Networks, and so on. The Random forests

(RF) algorithm is a multi-class classifier method which has a high classification capa-

bility and enables high-speed learning and classification. Random forests are a group

of unpruned classification or regression trees made from the bootstrap samples of the

data. The final classification of an individual is determined by voting over all trees in

the forest [25].

The key steps of RF algorithm are as follows. Firstly, randomly draw the same
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number of cases with the original data with replacement to form a subset, and repeat

this process several times. Secondly, for each subset, grow an unpruned classifica-

tion or regression tree. At each node of the tree, randomly sample a small group

of attributable variables and the best split is calculated based on those selected at-

tributable variables. Lastly, decide a final predicted outcome by combining the results

over all trees (an average for the regression tree, a majority vote for the classifica-

tion tree)[26]. The procedure of RF classification algorithm is illustrated in Figure 4.2.

All Data

Random Subsample 1 Random Subsample 2 Random Subsample N

Classification Tree 1 Classification Tree 2 Classification Tree N

The Majority Vote for

the Classification Trees

The Final

Predicted

Outcome

Figure 4.2: Key Steps of RF Classification Algorithm.

RF is chosen as the classifier in our study, because while having about the

same accuracy as other algorithms, it is efficient for large datasets, and it does not

44



www.manaraa.com

overfit the data. In addition, the cross validation is not necessary for RF, because it

generates an internal unbiased estimate of the true prediction error, which is called

the out-of-bag (OOB) error. Even though the OOB error overestimates the true error

in some cases ([27]), however, because the bias is low, one may simply report the OOB

error as an expected upper bound to the actual prediction error.

4.3 Time Dependent Kernel Density-Based Classification Algorithm

The representation of our new feature in the time series classification and the com-

parative studies are presented in detail in the following subsections.

4.3.1 Feature Vector Representation

Since the method proposed by Nanopoulos et al.(2001) was based on the basic statis-

tics of a distribution, a possible way to improve this method is to replace those statis-

tics by the probability density, which usually contains more information about the

distribution. Here the probability density can be estimated by the Time Dependent

Kernel Density Estimates (TDKDE).

As illustrated in section 3.2, the Time Dependent Kernel Density Estimates
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(TDKDE) at point y is expressed by

f̃T (y) =
1

h

T∑
j=1

K(
y − yj
h

)
1− ω

1− ωT
ωT−j,

where K(·) is the kernel, h is the bandwidth, ω is the discount parameter for the

exponentially weighted moving average (EWMA) filter.

For the ith sample in the dataset with length T : (yi1, yi2, ..., yiT ), the corre-

sponding statistical feature vector f 3i can be expressed by TDKDE at point y
(q)
i , (q =

1, 2, ..., Q), i.e.

f3i = (f̃T (y
(1)
i ), f̃T (y

(2)
i ), ..., f̃T (y

(Q)
i )).

Since the length of the TDKDE-based feature vector is Q, when Q < T , this feature

vector can be a lower-dimensional representation of the raw data, which means it also

works as a meaningful dimensionality reduction technique.

In order to obtain the appropriate TDKDE, one needs to estimate the param-

eters h and ω. In this study, the optimal pair of parameters (h∗, ω∗) can be estimated

using the new estimation procedure developed in Chapter 3.

4.3.2 Classification

Once the TDKDE-based feature vectors are obtained, they are fed to a supervised

learning classifier: the Random Forests(RF) algorithm. To compare the classification

performances, the out-of-bag(OOB) error is used as a criterion of measuring the true
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prediction error. In the Breiman’s (1996b) study of error estimates, the empirical evi-

dence was given to show that the out-of-bag estimate is as accurate as using a testing

set of the same size as the training set. Therefore, we combine the training set and the

testing set of each original dataset in this study, because there is no need to separate a

testing set to get an unbiased estimate of the prediction error (Breiman’s (1996b)[25]).

4.3.3 New Algorithm and Comparative Studies

The key steps of the new algorithm that we have developed combined with the feature

extraction and classification are shown in Algorithm 2 as stated below. The flowchart

for the parameter estimation was presented in Figure 3.3 in Chapter 3.

Figure 4.3 illustrates the process of the proposed algorithm and the compara-

tive study with other two existing feature-based time series classification algorithms.

In Method A, the first and second order statistical features proposed by Nanopoulos

et al.(2001) were illustrated in the section 4.2.2. The idea of Method B came from

Alonso et al.(2006), where the KDE was used to provide estimates for the forecast

densities in a time series clustering problem. In Method C, the feature vectors are

obtained by the Time Dependent Kernel Density Estimation (TDKDE). The optimal

parameters (ω∗, h∗) are estimated using the method developed in Chapter 3.

For the purpose of comparison, the Gaussian kernel is selected as the kernel

function K(·) for the KDE-based algorithm (Method B in Figure 4.3) and TDKDE-
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based algorithm (Method C in Figure 4.3), where

K(·) =
1√
2π
exp(−y

2

2
).

The optimal bandwidth (Silverman (1986)[30]) is chosen as the bandwidth h in

Method B as well as the initial bandwidth h0 in the Method C. The practical es-

timation of the bandwidth is given by

h =

(
4σ̂5

3n

) 1
5

≈ 1.06σ̂n−1/5,

where σ̂ is the standard deviation of the sample. K can be any reasonable integer,

and we have K = 500 in this study in order to provide relatively robust estimators.

4.4 Datasets

In order to compare the performance of these three feature-based algorithms, we

would like to verify the results using multiple datasets, because in general, the results

evaluated on multiple datasets should be more reliable than those evaluated on only

one special dataset.

The UCR Time Series Data Mining Archive (Keogh et al. 2011[28]) has been

widely used as a benchmark for evaluating the performance of time series classifica-

tion or clustering algorithms. It contains multiple datasets that were gathered from

diverse resources. The application domains vary broadly across the archive, including
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Time Series
Dataset

First Order
and

Second Order
Statistical Features KDE

Optimal Parameters
(ω∗, h∗)

Estimation

TDKDE

Feature Vectors

Classification
(Random Forests Algorithm)

Predictive
Results

Method A

Method B

Method C

Figure 4.3: The Network of the Proposed Algorithm (Method C) and the Comparative
Studies.

natural science, health science, social science, and so on. The number of classes, the

length of time series data and the sample size also vary from one dataset to another.

All the samples within the same dataset have equal length, and this property can ease

the data prepossessing procedure for classification purposes. All the datasets in this

data mining archive are labeled, univariate time series, and each dataset is split into

a training set and a testing set, which is convenient for the performance comparison

of supervised learning algorithms.

In our study, twenty datasets from the UCR Time Series Data Mining Archive
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are analyzed. Even though this archive has kept updating since 2011 to include more

datasets, the original twenty datasets in this archive are able to provide sufficient

information for comparative studies[17].

4.4.1 Classical Examples in the Archive

To have a better understanding of the datasets in the UCR Time Series Data Mining

Archive, we select three classical datasets and illustrate each of them in detail.

(a) Gun Point Dataset

This dataset is transformed from the video surveillance. The dataset contains two

classes: Gun-Draw and Point, each class has 100 samples. In the Gun-Draw class,

the following hands motions have been recorded: drawing a replicate gun from a

hip-mounted holster, pointing it at a target for a second, and returning the gun to

the holster. In the Point class, the hands motions have been recorded when actors

pretended drawing a gun. The time series are converted by tracking the centroid

of the actors right hands in both the horizontal axis (X-axis) and the vertical axis

(Y-axis)[16]. In this dataset, only the motion in the X-axis is used. The time series

data from two classes are visualized in Figure 4.4.

(b) Face (Four)Dataset

The images might be converted into “pseudo time series” data to make the classifica-

tion task easier. The Face (Four) dataset comes from a face retrieval problem where

all the head profiles are converted into the “pseudo time series”. The side view photos
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Figure 4.4: The Gun/Point Dataset with Two Classes (The Gun-Draw Class and the Point
Class)

of four different individuals are taken with different facial expressions: talking, smil-

ing, frowning, laughing, etc. The time series is converted by measuring a local angle

at each point of the image contour, starting from the neck area of a head profile, as

shown in Figure 4.5. The dataset contains 112 samples in total with 4 classes, i.e. 4

different individuals. Each time series has been normalized by subtracting its mean,

and then divide by its standard deviation to have the mean of zero and the standard

deviation of one. [16]

(c) ECG Dataset

The electrocardiogram (ECG) signals, which represent the cardiac function, are record-

ings of the electric waves being generated during cardiac activities. The ECG dataset

contains 200 samples with 133 normal samples and 67 abnormal samples.[49] The

standardized signals are visualized in Figure 4.6.
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Figure 4.5: Face (Four) Dataset. The Side View of a Head Profile Might be Converted into
a “Pseudo Time Series”

4.5 Classification Results

Table 4.2 shows the classification results for all the twenty datasets from the UCR

Time Series Classification Archive. The OOB error rate from the Random Forests is

used as a criterion for the performance comparison. The number of samples refers to

the sample size of each dataset. In this study, the training set and the testing set in

each original dataset are combined.

In order to make the algorithm comparable to each other, we choose the same

number of points Q and the same kernel function (Gaussian kernel in this case) for the

probability density estimates in both Method B and Method C. Here Q is proportional

to the time series length T, which is set to be Q = 7
8
T in our study. Since Q < T , both

Method B and C can be taken as dimensionality reduction techniques. In addition,

the optimal bandwidth is chosen as the bandwidth h in Method B and the initial

52



www.manaraa.com

Figure 4.6: Standardized ECG Signals with 5 Samples from Each Class

bandwidth h0 in Method C. For the parameters in the Random Forests, the number

of trees is fixed to be 500, and the number of eligible splitters is chosen by the rule of

thumb as
√
Q.

For each dataset, the best performance, i.e. the lowest OOB error rate, is

denoted by the boldface number. As indicated from Table 4.2, the KDE-based RF

approach (Method B) has the best performance on 1 out of 20 datasets and TDKDE-

based RF approach (Method C) has the best performance on 19 out of 20 datasets.

A better illustration of performance comparisons can be shown in Figure 4.7,

Figure 4.8 and Figure 4.9. These figures clearly visualize the pairwise error rates for

any two algorithms. Take Figure 4.7 as an example, each dot in the graph represents

a pair of OOB error rates of the KDE-based RF approach and the statistical feature-
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Figure 4.7: OOB Error Rates of Statistical-Feature-Based RF Approach Versus KDE-Based
RF Approach.

based RF approach for a specific dataset. The dots on the 45 degree line indicate that

these two algorithms have equal error rates on the corresponding datasets. The dots

on the upper half of the graph indicate that the KDE-based RF approach outperforms

the statistical feature-based RF approach, and vice versa.

As can be concluded from the figures, the KDE-based RF approach and the

TDKDE-based RF approach significantly outperform the statistical feature-based RF

approach; the TDKDE-based RF approach also significantly outperforms the KDE-

based RF approach on these twenty datasets, with the odds 19:1.

4.6 Contributions

In the present study, we have developed a new feature-based time series classification

algorithm, the Time Dependent Kernel Density Estimation (TDKDE) based Random
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Figure 4.8: OOB Error Rates of Statistical-Feature-Based RF Approach Versus TDKDE-
Based RF Approach.

Forests classification algorithm, that gives excellent results in classifying both station-

ary and non-stationary time dependent information (signals). The evaluation perfor-

mance is illustrated using twenty datasets from the UCR Time Series Classification

Archive. The analysis of the classification results verifies that our proposed method,

the TDKDE-based Random Forests approach, is significantly superior to the com-

monly used statistical feature-based Random Forests method as well as KDE-based

Random Forests approach in terms of the out-of-bag (OOB) errors. Furthermore, our

new method is able to address a number of open real world problems.
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Figure 4.9: OOB Error Rate of KDE-Based RF Approach Versus TDKDE-Based RF Ap-
proach.
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Algorithm 2 Time-Dependent-Kernel-Density-Based Time Series Classification

1: procedure Time-Dependent-Kernel-Density-Based Time Series Classifica-
tion

2: Obtain the initial bandwidth h0 and ω0 .
3: Generate K pairs of h and ω : (ωk, hk), k = 1, 2, ...,K, where h ∈ [0.5h0, 1.5h0], and
ω ∈ [0.5ω0, 1.5ω0].

4: Generate T points: Ut = t/T, t = 1, 2, ..., T, to represent the CDF of the discrete
standard uniform distribution.

5: Calculate F̃kt(y) according to each pair of (ωk, hk) where

F̃kt(y) =
t∑

j=1

H(
yt − yj
hk

)
1− ωk
1− ωtk

ωt−jk

and k = 1, 2, ...,K. Sort F̃kt(y) such that: F̃k1(y) ≤ F̃k2(y) ≤ ... ≤ F̃kT (y).
6: Calculate the squared difference between F̃kt(y) and Ut:

Ek =

T∑
t=1

[F̃kt(y)− Ut]2

where k = 1, 2, ...,K, t = 1, ..., T.
7: Select the pair of (ωk, hk) corresponding to the minimal Ek with constraints 0 < ω <

1 and h > 0 to be the optimal pair of parameters: (ω∗, h∗).
8: Obtain the Time Dependent Kernel Density Estimation (TDKDE) by

f̃T (y) =
1

h∗

T∑
j=1

K(
y − yj
h∗

)
1− ω∗

1− ω∗T
ω∗T−j

for each sample, and record the density estimate at a point y(q), (q = 1, 2, ..., Q) as the
density-based feature vector

f3 = (f̃T (y(1)), f̃T (y(2)), ..., f̃T (y(Q)))

for each sample in the dataset.
9: Classify the time series based on the TDKDE-based feature vectors using Random

Forests
10: end procedure
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Table 4.2: Classification OOB Error Rates of Statistical Feature-Based RF Approach
(Method A), KDE-Based RF Approach (Method B) and the New Method: TDKDE-Based
RF Approach (Method C).

Dataset

Number Time Number Method Method New Method

of Series of A: OOB B: OOB C: OOB

Samples Length Classes Error Rate Error Rate Error Rate

synthetic control 600 60 6 0.2700 0.5367 0.0133

Gun Point 200 150 2 0.2800 0.0600 0.0450

CBF 930 128 3 0.3828 0.3355 0.0118

FaceAll 2250 131 14 0.6027 0.2747 0.0982

OSULeaf 442 427 6 0.4683 0.4434 0.2692

SwedishLeaf 1125 128 15 0.5360 0.2507 0.1271

50words 905 270 50 0.6906 0.6773 0.3834

Trace 200 275 4 0.1100 0.0050 0.0000

Two Patterns 5000 128 4 0.7286 0.5676 0.0460

wafer 7164 152 2 0.0188 0.0354 0.0174

FaceFour 112 350 4 0.6339 0.1250 0.3571

Lightning-2 121 637 2 0.3719 0.2314 0.0826

Lightning-7 143 319 7 0.5315 0.4545 0.1888

ECG 200 96 2 0.2900 0.1950 0.0150

Adiac 781 176 37 0.7004 0.2996 0.2420

Yoga 3300 426 2 0.3336 0.1361 0.0218

Fish 350 463 7 0.6343 0.3200 0.2286

Beef 60 470 5 0.5167 0.4667 0.1167

Coffee 56 286 2 0.1071 0.2500 0.0000

OliveOil 60 570 4 0.4333 0.2167 0.0000
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5 Time-Dependent-Kernel-Density-Based Time Series Clustering

5.1 Introduction

Unsupervised learning is becoming increasingly popular, as it is used for detecting

hidden patterns or clusters in data without labeled responses. As one of the most

important branches of unsupervised learning, time series clustering is being studied

and a new feature for clustering is developed in this study.

5.1.1 Time Series Clustering

Time series clustering is a branch of the unsupervised learning to separate time se-

ries data into different clusters. It works by mining the underlying structure in an

unlabeled time series dataset to organize data into similar groups, so that the within-

group dissimilarity is minimized and the between-group dissimilarity is maximized

[33]. Clustering the time series is particularly advantageous because labels or tar-

gets are not needed in this technique, which means that it does not rely on time-

consuming annotation of the data [51]. Leading to the discovery of dynamic changes

in the sequences, time series clustering has extracted significant attention in the last
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few decades, including the area of anomaly detection, intrusion detection, process

control, and character recognition [52],[19],[53].

5.1.2 Representations of Time Series

Shape-based, model-based and feature-based methods are three major approaches to

cluster time-series [32]. The shape-based approach, also named raw-data-based or

instance-based approach [17], works directly with the raw time series data by match-

ing them to the similar instances of the time series.

The model-based methods convert a raw time-series into model parameters,

and then the distances between the extracted model parameters are measured to be

applied to the clustering algorithm [33]. The model-based method is able to handle

the time series of different lengths [34]. However, it has scalability problems [35], and

its performance reduces when the clusters are close to each other [36].

In the feature-based approach, the raw time-series is represented by a set of

derived properties [17], namely features. Then, a clustering algorithm is applied to

the extracted feature vectors [32]. Feature vectors usually have lower dimensions com-

pared to the length of the raw data, and features can make distance calculations to

be more meaningful and feasible [37]. The commonly used features for time series

clustering include the autocorrelation, skewness, Discrete Wavelet Transform (DWT)

and Discrete Fourier Transform (DFT).
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5.1.3 Structure of the Study

The commonly used features, such as the autocorrelation and skewness, might not

take the time as a varying factor. In this study, we present a new feature-based time

series clustering algorithm using the Time Dependent Kernel Density Estimation (TD-

KDE) as the time varying feature, and compare its performance to that of the widely

used feature-based method: Discrete Wavelet Transform (DWT) approach. Our new

method is demonstrated to be superior to the DWT-based approach evaluated on

datasets from the UCR Time Series Data Mining Archive[28].

The rest of this study is organized as follows: section 2 illustrates the back-

ground and related methodologies. In section 3, the proposed algorithm on the basis

of TDKDE is presented in detail. The dataset description and the performance com-

parison are included in section 4 and section 5. Finally, we conclude the study by

summarizing the main contributions in Section 6.

5.2 Background and Related Methodologies

In this study, we introduce the Time Dependent Kernel Density Estimates as a new

feature with the Self-organizing Map clustering algorithm built on it. The background

and related methodologies are explained in detail in the following subsections.
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5.2.1 Time Dependent Kernel Density Estimates (TDKDE)

Kernel Density Estimation (KDE) is a non-parametric method to estimate the prob-

ability density function of a random variable Y . Let (y1, y2, ..., yT ) be an independent

and identically distributed sample drawn from a distribution with an unknown prob-

ability density f [38]. The traditional kernel estimator of f(y) at point y can be

expressed as:

f̃T (y) =
1

Th

T∑
j=1

K(
y − yj
h

). (5.2.1)

Here T is the number of observations, h is the bandwidth, and K(·) is the kernel,

which is a non-negative function that integrates to one with mean zero.

The Time Dependent Kernel Density Estimates (TDKDE) can be seen as a

combination of the Kernel Density Estimation(KDE) and the time factor. When the

density estimation is thought to vary with time, it could be reasonable to introduce

a weighting scheme to adjust the traditional kernel density estimation. One of the

widely used schemes is the exponentially weighted moving average (EWMA) filter,

which works by discounting older observations in an exponentially decaying manner.

The time dependent kernel density estimation developed by Harvey and Oryshchenko

(2012) [22]is such an estimation adjusted by the EWMA weighting scheme which is

given by:

f̃t(y) =
1

h

t∑
j=1

K(
y − yj
h

)wt,j, t = 1, ..., T. (5.2.2)
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In the general case,
∑t

j=1wt,j = 1. In the study of Harvey and Oryshchenko (2012),

wt,j is chosen to be:

wt,j =
1− ω
1− ωt

ωt−j, j = 1, ..., t, (5.2.3)

which is the EWMA filter with the discount parameter ω. Consequently, the TDKDE

for the corresponding CDF can be expressed as:

F̃t(y) =
t∑

j=1

H(
y − yj
h

)
1− ω
1− ωt

ωt−j, (5.2.4)

where H(·) is the CDF form of the corresponding kernel K(·).

In order to obtain the TDKDE, two parameters, the bandwidth h and the

discount parameter ω, need to be estimated. The new estimation procedure has been

developed and discussed in Chapter 3.

5.2.2 Discrete Wavelet Transformations

The wavelet transformation is one of the most popular time-frequency transform tech-

niques for hierarchically decomposing sequences [39]. The discrete wavelet transform

(DWT) is a linear transformation of a sequence in the time domain into wavelet coef-

ficients in the frequency domain [40]. DWT is very appropriate for the dimensionality

reduction, noise filtering, as well as singularity detections.[41].

An original time series is divided into two components by DWT. The first

component is a sequence of coefficients denoted as the scaling coefficients (or smooth

coefficients [42]), which are proportional to the averages over the original time series.
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The second component is a sequence of the wavelet coefficients, or denoted as the

detail coefficients, which are proportional to the differences of averages[43].

For every pair j, k of integers, the basis of the DWT is a set of functions which

are defined by:

ψj,k(t) = 2j/2ψ(2jt− k), t ∈ R,

where ψ is the mother wavelet function, and 2j is the scaling of t [37]. There are

a number of basis functions that can be used as the mother wavelet. A simple and

commonly used wavelet is the Haar wavelet. The Haar wavelet is memory efficient,

and it preserves Euclidean distance as well [44]. The mother wavelet function of the

Haar wavelet ψ(t) can be described as

ψ(t) =



1 0 ≤ t < 1
2
,

−1 1
2
≤ t < 1,

0 otherwise.

Its scaling function φ(t) can be expressed by

φ(t) =


1 0 ≤ t < 1,

0 otherwise.

The procedure to find the Haar wavelet transform of a discrete sequence can

be illustrated using this one-dimensional sequence (5, 1, 9, 5) (shown in Table 5.1).
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Table 5.1: Procedure to Find the Haar Transform: A Simple Example

Level Averages Detailed Coefficient

1 5, 1, 9, 5

2 3, 7 2, 2

3 5 -2

Level 1 keeps the full resolution (four dimensions) of the discrete sequence. For the

Level 2, the averages of (5, 1) and (9, 5) are taken to make a reduced sequence (3, 7).

The values in the sequence (2, 2) are the differences of (5, 1) and (9, 5) divided by

two respectively. The sequences in the third level are obtained following the same

procedure, and we continue this process until a resolution of 1 is reached.

5.2.3 Clustering: Self-Organizing Maps

Kohonen’s Self-organizing Maps (SOM) are one of the most popular neural network

models [45] which map high-dimensional data into the lower-dimensional topological

structures [46]. These mappings are able to preserve the important topological rela-

tionships, i.e. the relative distances between the original data. [54] The SOM is one

of the most distinguished unsupervised learning algorithms which learns to cluster

inputs in such a way that the adjacent neurons (or nodes) on the map respond to

similar input vectors [47] .

The SOM consists of the input layer and the output layer (competitive layer),
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connected with each other by weights. Figure 5.1 shows the topological structure with

a simple SOM as an example. This is a network with 3× 3 nodes in the output layer

connected to each vector in the input layer. Each node has a specific topological po-

sition and contains a vector of weights with the same dimension as the input vectors.

The learning process of the SOM is shown in the flowchart in Figure 5.2,

Figure 5.1: Topological Structure of the SOM

where X = (x1, x2, ..., xn) is a set of training samples; Wij is a p × q grid of unites

where i and j are the coordinates on that grid; α is the learning rate with the bounded

range [0, 1]; r is the radius of the neighborhood function h(Wij,Wmn, r).
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Initialize the

SOM network

Randomly choose

an input vector xm

Calculate the distance

dij = ||xm − Wij ||

Select the unit that mini-

mized dij as the winner Wwin

Update each unit Wij by

Wij = Wij + αh(Wwin,Wij , r)||xm −Wij ||

Decrease α and r

α reaches 0 ?

Final Weight

Vectors

No

Yes

Figure 5.2: The SOM Learning Process

5.3 Time Dependent Kernel Density-Based Clustering Algorithm

In this study, we would like to use the Time Dependent Kernel Density Estimates

(TDKDE) as a new time varying feature in the clustering of time series, and compare
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the clustering performances of the TDKDE-based approach to the widely used DWT-

based method.

5.3.1 Feature Vector Representations

In the TDKDE-based approach, the feature vector fTDKDEi
for the ith sample in

the dataset with length T : (yi1, yi2, ..., yiT ), can be expressed by TDKDE at point

y
(q)
i , (q = 1, 2, ..., Q), i.e.

fTDKDEi
= (f̃T (y

(1)
i ), f̃T (y

(2)
i ), ..., f̃T (y

(Q)
i )).

In order to obtain the appropriate TDKDE, one needs to estimate the parameters h

and ω. In this study, the optimal pair of parameters (h∗, ω∗) can be estimated using

the new estimation procedure developed in Chapter 3.

In the DWT-based approach, the feature vector fDWTi
for the ith sample in the

dataset with length T : (yi1, yi2, ..., yiT ), can be expressed by the wavelet coefficients

Wi, i.e.

fDWTi
= (W

(1)
i ,W

(2)
i , ...,W

(Q)
i ).

For the purposed of comparison, these two feature vectors are designed to

have the equal length Q = 7
8
T , which means that the first three levels of the wavelet

coefficients are used in our study. Since Q < T , both feature vectors can be adopted

as meaningful dimensionality reduction techniques.
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5.3.2 New Algorithm and Comparative Studies

Once the TDKDE-based feature vectors are obtained, they are fed to an unsupervised

learning algorithm, the Self-organizing Map(SOM) algorithm, as the input vectors.

The key steps of the TDKDE-based clustering algorithm and the existing DWT-based

method are shown in Figure 5.3. For the purpose of comparison, the feature vectors

extracted from both methods are designed to have equal length.

5.3.3 Clustering Validation

To compare the clustering performances, the Adjusted Rand Index (ARI) is used as

a criterion. The ARI is frequently used for measuring the similarity of a cluster to a

reference. It is a function that measures the agreement between two partitions: one

given by the prediction results from the clustering process and the other defined by

the target data.

The ARI aims to analyze how similar a cluster to a reference is by counting

the correctly classified pairs of elements. As demonstrated by Santos (2009) [48], it

is especially good for multi-class classification. The ARI may yield a value with the

bounded range [−1, 1]. A higher ARI indicates a better match between the predicted

clusters and the target clusters, and 1 is the perfect match score.
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5.4 Datasets

5.4.1 The UCR Time Series Data Mining Archive

In order to compare the performance of the DWT-based clustering and the TDKDE-

based clustering algorithms, we would like to verify the results using multiple datasets,

because in general, the results evaluated on multiple datasets should be more reliable

than those evaluated on only one special dataset.

The UCR Time Series Data Mining Archive (Keogh et al. 2011[28]) has been

widely used as a benchmark for evaluating the performance of time series classifica-

tion or clustering algorithms. It contains multiple datasets that were gathered from

diverse resources. The application domains vary broadly across the archive, including

natural science, health science, social science, and so on. The applications are not

limited to the real time series, but also contain the “pseudo time series” retrieved

from videos, images, handwritten materials and texts.

All the datasets in this data mining archive are labeled, univariate time series,

and each dataset is split into a training set and a testing set, which is convenient

for the performance comparison of supervised and unsupervised learning algorithms.

Since we are focusing on the unsupervised learning algorithms in this study, we train

each of the dataset without training labels, and then evaluate the performance by

comparing the predicted labels with the true labels using the testing set.

In our study, twenty datasets from the UCR Time Series Data Mining Archive

are analyzed. Even though this archive has kept updating since 2011 to include more
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datasets, the original twenty datasets in this archive are able to provide sufficient

information for comparative studies[17].

5.4.2 An example: ECG Dataset

To have a better understanding of the clustering algorithm, we choose the ECG

dataset as an example to illustrate the clustering results in detail.

The electrocardiogram (ECG) signals, which represent the cardiac function,

are recordings of the electric waves being generated during cardiac activities. The

ECG dataset contains 200 samples with 133 normal samples and 67 abnormal sam-

ples [49]. The 200 samples are equally separated into two sets: 100 samples in the

training set and 100 samples in the testing set. The standardized signals are visualized

in Figure 5.4.

The SOM is usually presented by a two-dimensional regular grid of nodes. The

weight vector is associated with each node in the output layer. The weight vector of

each node optimally describes the inputs mapped to that node. They are automati-

cally organized into a meaningful two-dimensional structure in which similar weight

vectors are closer to each other in the map than the dissimilar ones [50]. By visualiz-

ing the weight vectors on this two-dimensional map, we can see patterns and clusters

in the distribution of inputs.

In this exemplary application with the ECG dataset, we visualize weight vec-
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tors of the DWT-based SOM and the proposed TDKDE-based SOM in Figure 5.5

and Figure 5.6 respectively. As indicated from the two figures, the neighboring nodes

are mutually similar in the weight vectors, and thus the samples can be isolated into

different clusters. The nodes with distinct colors represent different clusters and the

boundaries are denoted by the bold lines. Compared to the DWT-based approach,

the weight vectors from different clusters in the TDKDE-based approach seem to be

more dissimilar, which indicate that using the TDKDE instead of DWT as a feature

may lead to a better clustering performance on this dataset. Furthermore, as evalu-

ated by the ARI, the ARI score on the TDKDE-based approach is higher than that

on the DWT-based approach, which demonstrates that the TDKDE-based approach

outperforms the DWT-based approach on this ECG dataset.

5.5 Clustering Results

Table 5.2 shows the clustering results for all the twenty datasets from the UCR Time

Series Data Mining Archive. The Adjusted Rand Index (ARI) is used as a criterion

for the performance comparison. In this study, the training set and the testing set

are separated in the same way as those in the original database.

In order to make the algorithm comparable to each other, we choose the same

number of points Q for the DWT and the TDKDE feature vectors. For a time series

with length T , Q is set to be Q = 7
8
T in our study, which means that only the

first, second and third level of the wavelet coefficients are used. Since Q < T , both

DWT-based approach and TDKDE-based approach can be taken as dimensionality
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reduction techniques. The Haar wavelet is chosen as the wavelet function in the DWT-

based method. In the TDKDE-based approach, the optimal bandwidth is adopted as

the initial bandwidth h0. In addition, the Gaussian kernel is selected as the kernel

function K(·), i.e.,

K(·) =
1√
2π
exp(−y

2

2
).

For each dataset, the relatively better performance, i.e. the higher ARI, is

denoted by the boldface number. As indicated from Table 5.2, the TDKDE-based

SOM approach is superior to the DWT-based SOM approach on 16 out of 20 datasets.

The performance comparison results in terms of the ARI can be visualized in

Figure 5.7. Each dot in the graph represents a pair of ARI of the TDKDE-based

SOM approach and the DWT-based SOM approach for a specific dataset. The dots

on the 45 degree line indicate that these two algorithms have the same ARI on the

corresponding datasets. The dots on the upper half of the graph indicate that the

DWT-based SOM approach is superior to the TDKDE-based SOM approach, and

vice versa. As can be concluded from the figure, the TDKDE-based SOM approach

generally outperforms the DWT-based SOM approach on these twenty datasets, with

the odds 16:4.
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5.6 Contributions

In this chapter, we have introduced a new time varying feature–the Time Depen-

dent Kernel Density Estimation (TDKDE) as a feature for both stationary and non-

stationary time series clustering. Our new feature combined with Self-organizing

Maps (SOM) clustering algorithm provides excellent performance on clustering. The

merits of the proposed method have been validated by the clustering performance

of twenty datasets from the UCR Time Series Data Mining Archive. The analysis

of the results verifies that, the proposed TDKDE-based Self-organizing Map (SOM)

approach is superior to the commonly used DWT-based SOM method in terms of the

Adjusted Rand Index (ARI). Finally, our new method can be used to evaluate very

important time dependent signals in health science, business, environmental science,

among others.
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Time Series
Datasets

DWT

Optimal Parameters
(ω∗, h∗)

Estimation

TDKDE

Feature Vectors

Clustering
(Self-Organizing

Map (SOM))

Clustering
Results

Comparisons

Figure 5.3: The Comparison of the Two Feature-Based Time Series Clustering Algorithms:
the DWT-Based SOM (the Existing Method) and the TDKDE-Based SOM (the Proposed
Method).
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Figure 5.4: Standardized ECG Signals with 5 Samples from Each Class
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Figure 5.5: The Weight Vectors of the DWT-Based SOM on 8-by-8 Grid of Nodes

Figure 5.6: The Weight Vectors of the TDKDE-Based SOM on 8-by-8 Grid of Nodes
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Table 5.2: Clustering Performance Comparison: Adjusted Rand Index (ARI) of the Exist-
ing DWT-based SOM Approach Versus the Proposed TDKDE-Based SOM Approach for
Twenty Datasets.

Dataset

Size of Size of Number Time ARI of ARI of

Training Testing of Series DWT- TDKDE-

Set Set Classes Length based SOM based SOM

synthetic control 300 300 6 60 0.1906 0.4443

Gun Point 50 150 2 150 0.1451 0.1765

CBF 30 900 3 128 0.0011 0.1774

FaceAll 560 1690 14 131 0.1254 0.2999

OSULeaf 200 242 6 427 0.1211 0.1369

SwedishLeaf 500 625 15 128 0.3295 0.3398

50words 450 455 50 270 0.3652 0.1240

Trace 100 100 4 275 0.3445 0.4764

Two Patterns 1000 4000 4 128 0.0537 0.1395

Wafer 1000 6174 2 152 0.7160 0.0265

FaceFour 24 88 4 350 0.2194 0.0863

Lightning-2 60 61 2 637 -0.0132 0.0000

Lightning-7 70 73 7 319 0.0653 0.1618

ECG200 100 100 2 96 0.3772 0.8816

Adiac 390 391 37 176 0.4604 0.2124

Yoga 300 3000 2 426 0.1194 0.2268

Fish 175 175 7 463 0.3217 0.3350

Beef 30 30 5 470 0.1613 0.3894

Coffee 28 28 2 286 0.4922 1.0000

OliveOil 30 30 4 570 0.4077 0.6991
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Figure 5.7: The ARI of the TDKDE-Based SOM Approach Versus the DWT-Based SOM
Approach on the Twenty Datasets
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6 Future Research

Our future works consist of two main directions, the first is to involve various kernel

functions in the new estimation procedure of the Time Dependent Kernel Density

Estimation (TDKDE) in order to compare performances based on different kernels.

The second is for the time series classification and clustering problems, where the

length of the feature vectors can be modified and the performances based on various

lengths can be compared.

6.1 Future Research for the ANN Parameter Estimation Algorithm

For the purpose of comparison, Gaussian Kernel was employed for the new parameter

estimation algorithm in Chapter 3. It would be valuable if other kernel functions can

be involved in the new algorithm, and the performance comparisons can be conducted

with different combinations of kernel functions and the estimates of the discount

parameter ω and the bandwidth h. Furthermore, the computing time can be added

as a criterion to measure the performance of estimation procedure.
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6.2 Future Research for the TDKDE-Based Time Series Classification

and Clustering

In both supervised and unsupervised learning, the length of the feature vector was

set to be Q = 7
8
T , which means that the dimension of the feature vector was 87.5%

of the raw data. In the future research, it would be worth trying different lengths,

and study the relationship between the classification/clustering performances and the

lengths of feature vectors.

In addition, the Gaussian Kernel function can be replaced with other kernel

functions, and the Random Forests classification algorithm can be changed to other

supervised learning algorithms (such as Support Vector Machines, Naive Bayes and

Neural Networks) to see if there is any improvement for the classification performance.

81



www.manaraa.com

References

[1] Miladinovic, B. (2008). Kernel density estimation of reliability with applications

to extreme value distribution.

[2] Giraitis, L., Kapetanios, G., & Price, S. (2013). Adaptive forecasting in the pres-

ence of recent and ongoing structural change. Journal of Econometrics, 177(2),

153-170.

[3] Harvey, A., & Oryshchenko, V. (2012). Kernel density estimation for time series

data. International Journal of Forecasting, 28(1), 3-14.

[4] Guidoum, A. C. (2013). Kernel Estimator and Bandwidth Selection for Density

and its Derivatives.

[5] Perez, A. (2012). Comments on Kernel density estimation for time series data.

International Journal of Forecasting, 28(1), 15-19.

[6] Izenman, A. (2008). Modern multivariate statistical techniques (Vol. 1). New

York: Springer.

82



www.manaraa.com

[7] Harvey, A. C., & Oryshchenko, V. (2009). Local kernel density estimation from

time series data ( Preliminary and incomplete ), (1964), 120.

[8] Diebold, F. X., Gunther, T. A., & Tay, A. S. (1997). Evaluating density forecasts.

International Economic Review, 39(1), 863883.

[9] Wuertz, D., Chalabi, Y., & Luksan, L. (2006). Parameter Estimation of ARMA

Models with Garch/Aparch errors. Journal of Statistical Software, VV(II).

[10] Hagan, M. T., Demuth, H. B., Beale, M. H., & De Jess, O. (1996). Neural network

design (Vol. 20). Boston: PWS publishing company.

[11] Yu, H., & Wilamowski, B. M. (2011). Levenbergmarquardt training. Industrial

electronics handbook, 5(12), 1-16.

[12] Baliyan, A., Gaurav, K., & Mishra, S. K. (2015). A Review of Short Term Load

Forecasting using Artificial Neural Network Models. Procedia Computer Science,

48, 121-125.

[13] Gershenson, C. (2003). Artificial neural networks for beginners. arXiv preprint

cs/0308031.

[14] Wei, L., & Keogh, E. (2006, August). Semi-supervised time series classification.

In Proceedings of the 12th ACM SIGKDD international conference on Knowledge

discovery and data mining (pp. 748-753). ACM.

[15] Karpagachelvi, S., Arthanari, M., & Sivakumar, M. (2010). ECG feature extrac-

tion techniques-a survey approach. arXiv preprint arXiv:1005.0957.

83



www.manaraa.com

[16] Ratanamahatana, C. A., & Keogh, E. (2004, August). Everything you know

about dynamic time warping is wrong. In Third Workshop on Mining Temporal

and Sequential Data.

[17] Fulcher, B. D., & Jones, N. S. (2014). Highly comparative feature-based time-

series classification. Knowledge and Data Engineering, IEEE Transactions on,

26(12), 3026-3037.

[18] Nanopoulos, A., Alcock, R., & Manolopoulos, Y. (2001). Feature-based classi-

fication of time-series data. International Journal of Computer Research, 10(3),

49-61.

[19] Wang, X., Smith, K., & Hyndman, R. (2006).Characteristic-based clustering for

time series data. Data mining and knowledge Discovery, 13(3), 335-364.

[20] Deng, H., Runger, G., Tuv, E., & Vladimir, M. (2013). A time series forest for

classification and feature extraction. Information Sciences, 239, 142-153.

[21] Hansen, B. E. (2009). Lecture notes on nonparametrics. Lecture notes.

[22] Harvey, A., & Oryshchenko, V. (2012). Kernel density estimation for time series

data. International Journal of Forecasting, 28(1), 3-14.

[23] Xing, Z., Pei, J., Philip, S. Y., & Wang, K. (2011, April). Extracting Interpretable

Features for Early Classification on Time Series. In SDM (Vol. 11, pp. 247-258).

84



www.manaraa.com

[24] Alonso, A. M., Berrendero, J. R., Hernandez, A., & Justel, A. (2006). Time series

clustering based on forecast densities. Computational Statistics & Data Analysis,

51(2), 762-776.

[25] Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.

[26] Taylor, S. L., & Kim, K. (2011). A jackknife and voting classifier approach to

feature selection and classification. Cancer informatics, 10, 133.

[27] Mitchell, M. W. (2011). Bias of the Random Forest out-of-bag (OOB) error for

certain input parameters. Open Journal of Statistics, 1(03), 205.

[28] Yanping Chen, Eamonn Keogh, Bing Hu, Nurjahan Begum, Anthony Bagnall,

Abdullah Mueen and Gustavo Batista (2015). The UCR Time Series Classifica-

tion Archive.

[29] Olszewski, R. T. (2001). Generalized feature extraction for structural pattern

recognition in time-series data (No. CMU-CS-01-108). CARNEGIE-MELLON

UNIV PITTSBURGH PA SCHOOL OF COMPUTER SCIENCE.

[30] Silverman, B. W. (1986). Density estimation for statistics and data analysis (Vol.

26). CRC press.

[31] Santos, J. M., & Embrechts, M. (2009). On the use of the adjusted rand index

as a metric for evaluating supervised classification. In Artificial neural network-

sICANN 2009 (pp. 175-184). Springer Berlin Heidelberg.

85



www.manaraa.com

[32] Aghabozorgi, S., Shirkhorshidi, A. S., & Wah, T. Y. (2015). Time-series clus-

teringA decade review. Information Systems, 53, 16-38.

[33] Liao, T. W. (2005). Clustering of time series dataa survey. Pattern recognition,

38(11), 1857-1874.

[34] Xiong, Y., & Yeung, D. Y. (2003). Model-based clustering of sequential data

using ARMA mixtures. Proceedings of the 4th ACM Postgraduate Research Day,

203-210.

[35] Vlachos, M., Gunopulos, D., & Das, G. (2004). Indexing time-series under con-

ditions of noise. Data mining in time series databases, 67.

[36] Mitsa, T. (2010). Temporal data mining. CRC Press.

[37] Mrchen, F. (2003). Time series feature extraction for data mining using DWT

and DFT.

[38] Hansen, B. E. (2009). Lecture notes on nonparametrics. Lecture notes.

[39] Zhang, H., Ho, T. B., Zhang, Y., & Lin, M. S. (2006). Unsupervised feature

extraction for time series clustering using orthogonal wavelet transform. Infor-

matica, 30(3).

[40] Huhtala, Y., Karkkainen, J., & Toivonen, H. T. (1999, February). Mining for

similarities in aligned time series using wavelets. In AeroSense’99 (pp. 150-160).

International Society for Optics and Photonics.

86



www.manaraa.com

[41] Chaovalit, P., Gangopadhyay, A., Karabatis, G., & Chen, Z. (2011). Discrete

wavelet transform-based time series analysis and mining. ACM Computing Sur-

veys (CSUR), 43(2), 6.

[42] Kim, B. R., McMurry, T., Zhao, W., Wu, R., & Berg, A. (2010). Wavelet-based

functional clustering for patterns of high-dimensional dynamic gene expression.

Journal of Computational Biology, 17(8), 1067-1080.

[43] Kim, B. R., McMurry, T., Zhao, W., Wu, R., & Berg, A. (2010). Wavelet-based

functional clustering for patterns of high-dimensional dynamic gene expression.

Journal of Computational Biology, 17(8), 1067-1080.

[44] Chan, K. P., & Fu, A. W. C. (1999, March). Efficient time series matching by

wavelets. In Data Engineering, 1999. Proceedings., 15th International Conference

on (pp. 126-133). IEEE.

[45] Yin, H. (2008). The self-organizing maps: background, theories, extensions

and applications. In Computational intelligence: A compendium (pp. 715-762).

Springer Berlin Heidelberg.

[46] Fritzke, B. (1994). Growing cell structuresa self-organizing network for unsuper-

vised and supervised learning. Neural networks, 7(9), 1441-1460.

[47] Wang, L., Jiang, M., Lu, Y., Noe, F., & Smith, J. C. (2006). Self-organizing map

clustering analysis for molecular data. In Advances in Neural Networks-ISNN

2006 (pp. 1250-1255). Springer Berlin Heidelberg.

87



www.manaraa.com

[48] Santos, J. M., & Embrechts, M. (2009). On the use of the adjusted rand index

as a metric for evaluating supervised classification. In Artificial neural network-

sICANN 2009 (pp. 175-184). Springer Berlin Heidelberg.

[49] Olszewski, R. T. (2001). Generalized feature extraction for structural pattern

recognition in time-series data (No. CMU-CS-01-108). CARNEGIE-MELLON

UNIV PITTSBURGH PA SCHOOL OF COMPUTER SCIENCE.

[50] Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9),

1464-1480.

[51] Paparrizos, J., & Gravano, L. (2015, May). k-Shape: Efficient and Accurate Clus-

tering of Time Series. In Proceedings of the 2015 ACM SIGMOD International

Conference on Management of Data (pp. 1855-1870). ACM.

[52] Faloutsos, C., Ranganathan, M., & Manolopoulos, Y. (1994). Fast subsequence

matching in time-series databases (Vol. 23, No. 2, pp. 419-429). ACM.

[53] Chi, M., Banerjee, S., & Hassanien, A. E. (2009). Clustering time series data: an

evolutionary approach. In Foundations of Computational, IntelligenceVolume 6

(pp. 193-207). Springer Berlin Heidelberg.

[54] Kohonen, T., Oja, E., Simula, O., Visa, A., & Kangas, J. (1996). Engineering

applications of the self-organizing map. Proceedings of the IEEE, 84(10), 1358-

1384.

88


	University of South Florida
	Scholar Commons
	5-23-2016

	Time Dependent Kernel Density Estimation: A New Parameter Estimation Algorithm, Applications in Time Series Classiﬁcation and Clustering
	Xing Wang
	Scholar Commons Citation


	tmp.1471897447.pdf.DkG92

